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Abstract

This paper recites a parable, formulates a model and devises an algorithm for
optimizing tolls on a road network. Such tolls induce an equilibrium traffic
flow that is at once system-optimal and user-optimal.

• The parable introduces the network-wide congestion-pricing problem, in­
tending to emphasize the significance of the variability of users' value of
time and the importance of not restricting tolls to certain links a priori.

• The model permits the marginal value of time to be a random variable
having a different distribution for each origin-destination pair. Assuming
each trip uses a path that minimizes its own particular perception of gen­
eralized cost, it shows what economists have always known: to minimize
the total perceived cost of time, the best toll for a link is its expected
value of the social component of its marginal cost.

• The algorithm provides what transportation planners have never had:
the ability to determine this best toll for each link in the network. Being
both space- time-efficient, it can solve networks with thousands of nodes
in reasonable time on a 486-class PC.

PROTECTED UNDER'
ALL RIGHTS RESERVE~TERNATIONAL COPYRIGHT
NATIONAL TECHNICA .
U.S. DEPARTMENT oi~~~~~~~ON SERVICE
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1 Introduction

In their classic Studies in the Economics of Transportation, Beckmann, McGuire
and Winsten end their discussion on road tolls with:

One can convince himself that the charging of suitable, discrimina­
tory tolls [... ] could result in an efficient utilization of roads [... ].
But the proper choice of such tolls is a formidable problem.[3]

This paper solves their "formidable problem." Under common assumptions
regarding user-optimal behavior [17], it shows what economists have always
known: the best toll for a link is its expected value of the social component
of its "marginal cost." It also provides what economists have never known:
an algorithm for determining the best tolls-where to impose them and how
much to charge.

Background. Road pricing [11, 14, 16] is no longer unamerican. A political
outcast for thirty years, it suddenly emerged four years ago as a player in
U. S. transportation policy. Federal law prescribes it: the Intermodal Surface
Transportation Efficiency Act of 1991 (ISTEA) orders the U. S. Department of
Transportation (DOT) to execute up to five congestion pricing pilot projects
and earmarks $125 million to fund them. While Europe and Asia showed
interest in the subject for decades, U.S. DOT had previously never sponsored
a single significant road-pricing project.

Regrettably, as current events teach and re-teach, legislation only highlights
problems; it never solves them. Money is always necessary but seldom suffi­
cient. Intelligence is also required. Before congestion pricing can solve traffic
problems, transportation planners and engineers must know how, when, where,
and at what price to levy tolls on urban roads. Until now, the four years since
ISTEA had not provided means to answer these questions.

Relationship to Prior Work. As shown below, the optimal tolls problem is
equivalent to a bicriterion traffic assignment problem, which uses disaggregated
probability distributions for the value of time and has time and cost both being
flow-dependent. The only formulation and solution to this latter problem are
in [6], which bites off a more general problem and proposes an elementary
(i.,e., path-based) solution algorithm. This paper, besides providing a more
efficient (tree-based) algorithm, is a specific and self-contained application of
that paper's model to congestions pricing.

Before delving into the technutiae of model formulation and algorithm design,
we introduce the problem with a parable.
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1.1 A Toll for Two Towns

The Governor was in a huff when he called Johnstown's City Manager. "Ed,"
he growled, "my traffic engineers tell me Johnstown's local traffic reduces the
turnpike's speed from 55 to 25 mph, causing a shock wave that wreaks havoc
on upstream traffic. Johnstown residents use the turnpike for free. This must
stop. From now on, I want you to charge them a toll, one that is high enough
to deter enough traffic that the turnpike speed through Johnstown is at least
45 miles an hour. You got that?" Hearing Ed gulp, "yes, sir," the Governor
hung up without saying good bye.

Link Volumes (vehicles) and Speeds (mph)

Figure 1: Johnstown (Marysville) Traffic Before Tolls

Ed unrolled his traffic engineer's map of Johnstown's roads, showing local
traffic volumes and speeds (Figure 1). The only local trips in Johnstown were
1000 cars going from the HAL corporate headquarters at the northwest corner
(node 1) to the Country Club at the southeast corner (node 9). Running east­
west, the Turnpike bisected Johnston. The map showed 516 of these cars on
each of the turnpike links, (4-+5) and (5-+6). Their speed was 24 mph, just
as the Governor had said.

Ed knew that a toll would reduce turnpike usage; however, he did not know
the toll's best value. If too small, the toll would discourage too few trips: the
turnpike speeds would not increase to 45. If too large, it would discourage too
many trips: the revenue would not even pay for toll collection. Math problems
always gave him a headache. Accordingly, Ed did what he always did with
such conundrums. He consulted the Oracle.
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After asking the Oracle what the toll should be on each of the turnpike links,
Ed then answered her questions: he told her about the 1000 trips going from
node 1 to node 9, and he presented her with his traffic engineer's "BPR curves"
in Figure 2 relating each link's traversal time to its traffic volume.

25
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5 Arterials

0
0 200 400 600 800 1000

VEHICLES

Figure 2: Link Time vs Volume (BPR)

Satisfied, the Oracle stared hard into her crystal ball and while in her trance,
drew the picture appearing in Figure 3:
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TURNPIKE TOLL ($/LINK)

Figure 3: Johnstown Toll Impact: Speeds (mph) and Revenue ($)
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The Oracle explained to Ed that her picture showed speeds that resulted from
various toll levels. "You can see," she said as Ed fidgeted, "that as tolls rise to
six dollars, the speed on the turnpike rises from the current 24 mph up to the
55-mph speed limit. With a toll of two dollars, you will achieve your target
speed of 45 along with total toll revenue of $1,280 per day. The other, arterial
links' average speed will also improve, though less dramatically . . ."

But by then, Ed had thrown down the Oracle's five-dollar fee, darted from the
room, and was running back to his office. There, he ordered construction of
two toll plazas in the grand monumental style the Governor favored. When
the plazas were complete and christened, local travelers began paying two
dollars to use each of the turnpike links. The resulting traffic flows and speeds
settled down to a consistent average, shown in Figure 4. Ed was not surprised
that the 45-mph turnpike speed and the $1,280 revenue matched the Oracle's
prediction exactly. She was always right.

Link Volumes and Speeds

Revenue: $1,280

Figure 4: Johnstown Traffic (Turnpike Toll: $2.00jLink)

The next day, the Governor phoned: "Ed, my boy, you're a genius! You raised
those speeds right to where I wanted them. I've received hundreds of calls of
congratulations. By the way, how did we come up with just the right tolls?"
"Just good common sense, sir," Ed replied. He went on to talk about his
shrewd managerial style, but by then the Governor had hung up.

The phone rang again. It was the Chairperson of the Board of Supervisors of
Marysville, the town on Johnstown's eastern border, just downstream on the
turnpike. The Chairperson offered Ed the job of Marysville City Manager,
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at twice his current salary, to figure out tolls for the turnpike in Marysville.
"You see," pleaded the Chairperson, "I received this call this morning from
the Governor ..." Ed accepted immediately.

Ed already knew that Marysville's network was an exact copy of Johnstown's.
To his amazement, its local traffic was also identical: precisely 1000 cars went
from its node 1 to node 9. Conditions mimicked those in Figure 1 perfectly.

With Marysville's network, travel demand, and traffic duplicating Johnstown's,
Ed reasoned not to waste money on the Oracle. He went ahead and built
the toll plazas. The day they were complete, he levied a two-dollar toll on
Marysville's turnpike links. Then, sitting back in his leather chair and ad­
miring his Matisse original, he awaited the down pore of revenue and praise.

Link Volumes and Speeds

Revenue: $248

Figure 5: Marysville Traffic (Turnpike Toll: $2.00/Link)

He waited in vain. When his traffic engineer brought in the map shown in
Figure 5, Ed saw that the $2.00 toll in Marysville resulted only 62 trips using
the turnpike. Instead of the expected torential $1,280 of revenue, only $248
trickled in. This would not even cover the toll plazas' debt service. Before Ed
had finished his morning cappuccino, the Chairperson fired him.

Unemployed and confused, Ed returned to the Oracle, who nodded slowly as
he told her about the 62 trips. "Everything was the same," Ed whined. "What
happened?" He slid forward a five-dollar bill.
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The oracle looked into her crystal ball and drew another picture like the one
she had done for Johnstown (Figure 6). "Yes," she explained, moving her
bony nicotine-stained finger along the dashed line," your $2.00 toll had the
expected result. In fact, the highest revenue you could hope to receive from
turnpike tolls in Marysville is only about $425, from a toll of $1.00 per link."

60 Turnpike 1800

50 1500

40 1200 R
S E
P V
E 30 900 E
E N
D U

20 600 E
Arterials

.,. ...

10
.. ..... ...

300/ ........,
.....

I e.llevenue

0 .. - 0
0.00 1.00 2.00 3.00 4.00 5.00 6.00

TURNPIKE TOLL ($/LINK)

Figure 6: Marysville Toll Impact: Speeds (mph) and Revenue ($)

As usual the Oracle's explanation befuddled Ed; now it irritated him.
"Enough, already, of your complicated charts! I know how much revenue I
got-or didn't get. Just tell me why I didn't get more. Why I'm out of a job."

Accepting another five dollars, the Oracle returned to her crystal ball. Again,
she drew a picture, this one having two curves (Figure 7). While Ed drummed
his fingers and chewed his lips, she explained: "These probability densities
show how much the travelers in Johnstown and Marysville value their travel
time. Note that compared to Johnstown, Marysville is skewed way to the left.
Johnstown's median value of time is 50 cents per minute, while Marysville's is
only about 15 cents. Seeing Ed's eyelids droop, she softened her tone, gently
patted his hand, and said, "Marysville is K-Martj Johnstown is Gucci. This
difference is the whole reason their revenue isn't the same."
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Head pounding with pain, Ed staggered from the room and, in pursuit of a
lucrative mid-life career change, enrolled in a computer programming course.

7

6

5

4
f19(a)

3

2 Johnstown- - - --
1 .... ....

,,-
0

0 0.2 0.4 0.6 0.8 1.00

VOT a ($jmin)

Figure 7: Johnstown and Marysville VOT Distribution

The Oracle continued to study her crystal ball. After jotting some notes, she
phoned Marysville to offer her services. The Chairperson gratefully hired her.
When the Oracle recommended the tolls in Figure 8 and shared her predictions,
the Chairperson instituted them at once. (She also tore down the toll plazas,
but that is another story.)

The results appear in figure 8(b). More links had tolls, the average toll per trip
was higher, and at least ten frugaloids even drove from east to west-on links
(6--t5) and (5--t4)-to reduce toll costs. Nevertheless, the Marysville residents
were pleased. They had more path-cost options, and for most, trip time was
faster. The Governor gushed: turnpike speeds were 47 mph. The Chairper­
son gloated: daily revenue exceeded $3,000-nearly triple snooty Johnstown's.
The Oracle yawned: her predictions were correct, as usual.
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$0.20 $1.80

Figure 8(a): Link Tolls

15 475 18 355 20 170

Figure 8: Marysville Oracle-Priced Tolls and Traffic

Only Ed remained unhappy. Frustrated and unemployed, having repeatedly
failed his computer programming course, he would lie awake all night on his
park bench wondering how the Oracle did it. Once, in the haze of approaching
dawn, her image materialized above him. "I minimized the total perceived cost
of time," she whispered, then faded away before he could ask what in the world
she was talking about. As his life withered away in destitution, Ed would never
come to understand the lessons his Oracle had tried to teach him. Through
the weeds overgrowing his tombstone, one reads:

R.I.P.

Two steadfast truths
Ye must realize:
Each trip has its price
For time that it buys,

And only the fool
Sets tolls on his roads
Before hearing what
The Oracle bodes.

Beneath this cold stone
Lies toll planner Ed.
These truths he ignored,
And that's why he's dead.

Figure 9: Ed's Tombstone
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2 The Model

Given the following inputs:

• network topology (e.g., Figure 1),

• volume-time function for each link in the network (e.g., Figure 2),

• travel-demand matrix, and

• value-of-time (VOT) probability density function (PDF) for each origin-
destination pair (e.g., Figure 7),

the model predicts the "social-optimizing" toll and resultant traffic volume
for each link in the network. Qualitatively, the model's results are what an
economist would expect from marginal cost pricing: congested bottleneck links
have the highest tolls, and links with no congestion are free.

2.1 Preview

The model is a stochastic multi-commodity non-linear network optimization
that, subject to flow conservation and nonnegativity constraints, minimizes
the total perceived cost of time V, where

(1)
e

and x is the link-flow decision variable. The total traffic volume on link e is
X e and te(xe) is the link's travel time (min) at that volume. The average value­
of-time ($fmin) of the trips actually using link e is a e •

1 The tolls themselves
do not appear explicitly in the objective function:

From the point of view of the community, the tolls do not constitute
costs but are available again for redistribution .... [3]

Tolls do, however, enter implicitly. Each link e's volume X e depends on path
choices that depend on both time and toll.

Link Costs. Besides the link's volume-dependent time function t e , we will
associate with each link a cost (toll) function Ce , which depends on the link's
total volume and the average value-of-time among trips composing that vol­
ume. Assuming that a trip with VOT a "prices" a path p of time t p and total
toll cp as:

atp + cp

L (ate(xe) +ce)
eEp

(2)

1 This paper uses the term value-of-time, or simply VOT, without qualification to mean the marginal
value of time.
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and always uses a path with the lowest price, or "generalized cost", we will
show that if link e's toll Ce is the "marginal social cost" of the link:

Ce = aet~(xe)xe, (3)

then the equilibrium flow of a bicriterion traffic assignment minimizes (1).
Therefore, the value of a link's cost function at its user-optimal flow decides
its system-optimizing toll.

Organization of this Section. The model's detailed formulation begins
with a listing of all its objects: sets, input data, decision variables, and state
variables along with their relationships (constraints). Next, we formulate nec­
essary and sufficient conditions for a user-optimal equilibrium bicriterion traffic
assignment, and finally show them equivalent to those signifying a minimum
of (1).

2.2 Sets

~+ {nonnegative real numbers}

A {(marginal) values of time (VOT) a E R+}
N - {network nodes}

£ - {network links e = (ie,je) EN x N}
X {feasible traffic assignments}.

All the above is self-explanatory except X, whose definition must wait until
we discuss the decision variable x.

2.3 Inputs

g - the network: {N, £}
te time function for link e E £

fod - VOT PDF of trips going from 0 E N to dEN
Vod - total trips going from 0 E N to dEN.

The Network. The network g contains and connects all nodes 0 and d
referenced in the trip matrix ((Vod)) as well as other, "transshipment" points.2

Defining the network's topology, some pairs of these nodes are connected by
links (i.e., directed arcs). Each link has its own time and cost functions, which
contribute to the disutility each trip bears to use the link. Both functions are
volume-dependent.

2To avoid distinguishing between these node types, we may assume ((Vod)) is a INI-by-INI matrix with
zeros in the rows and columns of transshipment nodes.
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Link Time Function (te : ~+ -+ ~+). This function maps the total volume
on link e into minutes to traverse the link. It is a nondecreasing nonnegative
function of link e's total volume. That is, more traffic implies more time, and
all trips traverse link e in the same amount of time, whatever their value of
time. In addition, t e is assumed continuous, twice differentiable, and convex.

VOT PDF (fod : A -+ ~+). The value-of-time probability density function
fod may have any shape whatever-continuous or discrete in any combination­
provided it maps and a E A into ~+ and integrates to one.3 As indicated,
each origin-destination pair may have its distinct VOT PDF. The PDF's de­
gree of disaggregation, while crucial for accurate predictions, neither negates
the veracity of the model nor cripples the performance of the algorithm.

O-D Trips (Vod)' The trip matrix ((Vod)) gives the fixed, nonnegative number
of trips between each o-d pair. (Note that demand is assumed inelastic. While
the model readily extends to include elastic demand, this generalization does
not appear in this paper.) The number of trips with VOT a going from node
o to node d can be written as:

(4)

which would be interpreted as the number of trips from 0 to d whose VOT is
in the interval (a, a + da]. For brevity, however, we henceforward drop the
infinitesimal notation da for all such VOT-disaggregated variables.

Most important, the VOT PDF fod( a) facilitates disaggregating the total trips
from 0 to d into those trips with a VOT in any interval (alb, a Ub ]:

trips from 0 to d with VOT between alb and a ub

v Prob[alb < a < a Ub ]od _

l
aub

Vod fOd(a)da.
alb

2.4 Decision Variable

The model formulated here has only one decision variable, comprising all the
VOT- and origin-disaggregated link volumes. Let

xoe(a) = trips using link e that originate at node 0 and have VOT a.

Then intuitively the decision variable can be imagined as an "infinite" three­
dimensional matrix

(5)

3In this paper, the integral sign always means Riemann-Stieltjes integration.
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(11)

The cardinalities of Nand £ are finite, but A's is typically infinite. The
notation X e means the projection of x with respect to link e. Despite the
model's seeking optimal link tolls, its only decision variable is link volumes,
whose optimal value determines the tolls.

2.5 State Variables

Five state variables aid the model's formulation and its solution algorithm. All
are link variables and functions of their decision-variable component xoe(a).

xe(a) E xoe(a) = trips with VOT a E A using link e E £ (6)
oEN

Xe Lxe(a)da total trips using link e E £ (7)

Ue Laxe(a)da = "first moment" of a E A on link e E £ (8)

a e
Ue mean VOT for all trips using link e (9)-
Xe

Ce - aexet:(Xe) - marginal social cost of using link e E £. (10)

Total Trips Using Arc e: (xe ). The total volume on link e determines
the time to traverse the link. It also decides in part the cost to use the link.
Essentially, X e is the same variable found in conventional traffic assignment,
although here it is more difficult to compute.

Mean VOT of Trips Using Arc e: (a e ). The mean value-of-time for
trips using link e is an interesting state variable. Besides being in the model's
objective function, it reduces the problem to finite dimension. If there is no
volume on link e, that is, xoe(a) = 0 for all 0 E N and a E A, then a e is
undefined; however, this will pose no problem to the model or its algorithm.

First Moment of a on Arc e: (ue ). This state variable will prove to be
invaluable. It is a close relative of the average value-of-time on link e:

The state variable U e will occupy a refined version of the model's objective
function (1): and thus plays a leading role in the solution algorithm.

Arc Cost: (ce : ~+ X ~+ ~ ~+). Arc cost Ce is the dollar cost to use link e-a
toll, which applies equally to all users of that link. It is a function of the link's
total volume X e and average value-of-time a e • We can use the state variable
U e to rewrite (3) as:

12



It will be seen momentarily, that the state variable Ce is just the "social com­
ponent" of the link's (total) marginal (generalized) cost. Its value at the
user-optimal equilibrium is the desired system-optimal toll. That is,

Where naturally

t f
e

ate
aXe

L Lx~~t(a)da = L x~pt(a)da
o

- La L x~~t(a)da = L ax~Pt(a)da.
o

(12)

2.6 Constraints

As mentioned earlier, the model's only decision variable is x = (((xoe(a)))).
Besides being nonnegative, x must satisfy a system of flow conservation con­
straints, which guarantees that all trips only use paths connecting their origin
to their destination, and that these trips account exclusively for all link vol­
umes. Formally, for 0 E .N, and a E A:

L xoe(a) - L xoe(a) = vod(a), for all dE.N. (13)
{eE£lie=d} {eE£lie=d}

Any nonnegative instance of the decision variable x that satisfies (13) we
call a "feasible traffic assignment." We denote the set of all feasible traffic
assignments as X.

2.7 Objective Function

Using the above definitions, we can restate the model's objective more conve­
niently: find the minimand

x opt E argmin V(x)
XEX

where
V(x) = I: uete(xe)

eE£

(14)

and determine (c~tP) from Equation (12). The difference between (14) and (1)
reflects the substitution of U e for aexe, which also eliminates any problems
attending a e being undefined when X e is zero.

13



2.8 Optimality Conditions

This section derives the optimality conditions for (14). In addition, it expresses
these conditions compactly in terms of xe(a) instead of xoe(a), honoring these
two variables' relationship (6) as a constraint. This compaction is possible
because traffic equilibrium depends on X e(a) and because the partial derivative
of xe(a) with respect to xoe(a) is unity.

Theorem 1 (Convexity). V is convex, and therefore any local minimum
of V is a global minimum-although there may be multiple minimands that
yield the same value of V.

Proof.

V(x) - L uete(xe)
eEe

- Lte(Xe)l axe(a)da
eEe aEA

L 1 te(xe)axe(a)da.
eEe aEA

(15)

By assumption, te is convex in X e and, therefore, convex in xoe(a). That both
a and xe(a) are similarly nonnegative and differentiable makes the integrand
in (15) convex. Therefore V is convex.

A necessary and sufficient condition for a global minimum of the convex func­
tion V at x opt is that all directional derivatives there be nonnegative:

(16)

The next two lemmas and theorem derive a compact reformulation of (16) and
restate this condition in a form an algorithm can better understand. Along
the way, a brief remark ascribes economic significance to the results.

Lemma 1 (Gradient). The gradient of V has the component

(17)

Proof.

14



Remark. Economists call the two terms in (18) "private cost" and "social
cost." Private cost is the link's time weighted by that trip's specific VOT.
Social cost is the change in the link's expected total trip-minutes one additional
trip causes. This latter cost becomes the link's toll, to be levied equally upon
all trips using the link.

The sum of both costs is called the trip's "generalized cost," abbreviated GC.
A path's GC is the sum of its links'. A path that has the smallest GC for a
particular trip, we call the trip's min-GC path. At user-optimal equilibrium,
each trip uses its min-GC path and also pays according to the total cost of its
use: a policy that transportation economists consider equitable and efficient.

Lemma 2 (Directional Derivative). The directional derivative of V at X O

in the direction (x - X O
) is

Proof. From Lemma 1 and the definition of a directional derivative in the
context of this problem,

JL L (ate(x~) + u~t:(x~)) (xoe(a) - x~e(a)) da
A eEE oEN

1L (ate(X~) + u~t:(x~)) L (xoe(a) - X~e(a)) da
A eEE oEN

1L (ate(X~) + u~t:(x~)) (xe(a) - x~(a)) da.
A eEE
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Theorem 2 (Optimality Conditions). A necessary and sufficient condition
for a global minimum of V at xopt is

V'V(xopt)(x-xopt) = 1L (ate(X~Pt) +u~Ptt~(x~Pt)) (xe(a) - x~Pt(a)) da ~ O.
AeEE

(20)
Proof. At any local minimand xopt , all directional derivatives are non nega­
tive, and vice versa. From Lemma 2, this implies (20) for all x EX. Since V
is convex, the local minimum is also a global minimum.

We now show that (20) is satisfied iff each trip uses a path that minimizes its
particular generalized cost. First, we must introduce the notion of bicriterion
traffic assignment.

2.9 Bicriterion Traffic Assignment

When the trip matrix is decomposed by VaT according to the !odO'S, and
every trip is assigned to a path that minimizes its particular GCj we say we
have a T2 (user-optimal) Equilibrium Traffic Assignment [6], or T2-ETA for
short. "T2" denotes that two factors, i.e., cost and time, compose the gen­
eralized cost. "User-optimal" implies that all trips simultaneously use their
particular min-GC path. "Equilibrium" connotes that the volume-dependent
link times and costs are at levels precisely in balance with min-GC path selec­
tion and resultant link volumes. The following Lemma provides a necessary
and sufficient condition for such an assignment.

Lemma 3 (T2-ETA). The flow xopt = (x~Pt) is a user-optimal equilibrium
traffic assignment iff the following (variational inequality) holds for all x E X:

Proof (~). Let c~Pt and x~Pt be the (albeit unknown) values of arc cost and
time at equilibrium. Now consider trips for one given VaT a E A. The total
generalized trip cost at equilibrium is calculated by summing the products
of the time and cost at equilibrium with the arc volumes resulting from a
conventional, constant-VaT "all-or-nothing" assignment:

L (ate(X~Pt) + Ce(X~Pt)) x~Pt(a) = (m)in() L (ate(X~Pt) + Ce(X~Pt)) xe(a).
eEE X e 01 EX 01 eEE

(22)
Where X(a) is the projection of X for a particular VaT a. Equation (22) is
true because at equilibrium, every trip with the same 0 and d use a path with
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(24)

identical (minimal) GCs [17]. Rewrite (22) as, for all a E A:

E (ate(X~Pt) + Ce(X~Pt») x~Pt(a) ::; E (ate(X~Pt) + Ce(X~Pt») xe(a). (23)
eEE eEE

Or
E (ate(X~Pt) + Ce(X~Pt») (xe(a) - x~Pt(a») 2: o.
eEE

Integrating both sides of (24) over a E A proves necessity.

Proof (-¢=). To prove sufficiency, assume the contrary: that (21) is true
and all trips are not in equilibrium. That is, there exists some nonempty set
A' ~ A such that ((x~pt(a») is not an equilibrium flow for a E A'. Then,.
letting ((x~in(a») be the minimand of (22), for a E A',

E (ate(X~Pt) + Ce(X~Pt») x~pt(a) > E (ate(X~Pt) + Ce(X~Pt») x:in(a). (25)
eEE eEE

That is,
E (ate(X~Pt) + Ce(X~Pt») (x:in(a) - x~Pt(a») < 0 (26)
eEE

for all a E A'. While for a (j. A', equilibrium prevails:

E (ate(X~Pt) + Ce(X~Pt») (x:in (a) - x~Pt(a») = O. (27)
eEE

Integrating both sides of (26) and (27) over a E A' and a (j. A' respectively,

fiE (ate(X~Pt)+ Ce(X~Pt») (x:in(a) - x~Pt(a») da < 0 (28)
JOIEA eEE

fiE (ate(X~Pt)+ Ce(X~Pt») (x:in(a) - x~Pt(a») da O. (29)
JOirtA eEE

Adding (28) to (29) contradicts (21) and completes the proof of Lemma 3.

Theorem 3 (Optimal Tolls and T2-ETA). For all e E £, let X e E X and

te(xe) = t(xe) (30)
Ce(xe) = uet~(xe) (31)

and let x~pt be a solution to the corresponding T2-ETA problem. Then

(32)

solves the optimal tolls problem, and vice versa.

Proof. Under the above definitions (30) and (31) for of t e and ee, the direc­
tional derivative of the optimal tolls problem (20) and the variational inequal­
ity of the T2-ETA problem (21) are equivalent. Therefore, V is minimized
with and only with a time-cost bicriterion user-optimal equilibrium traffic as­
signment (T2-ETA), and the optimal tolls are given by (32).
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3 The Algorithm

This section develops procedures to compute a T2-ETA and thus solve the
optimal tolls problem. Since the objective function (14) is convex and the
constraints (13) comprise a closed and bounded convex set, the minimum of
(14) exists, and the well-known Frank-Wolfe (FW) algorithm can find it [7].
For purposes here, we summarize FW as follows:

1. Initialization. Start with any feasible approximate solution Xo EX.

2. Direction. Find the minimand

of the directional derivative of the objective function at the approximate
solution xo.

3. Termination. If convergence is satisfactory, quit with solution xopt ~ xo;
otherwise continue to Step 4.

4. Combination. Replace the approximate solution with the convex com­
bination of itself and the minimand of the directional derivative giving
the smallest objective function value. That is, letting .6.x = x min - xo,

and
,\opt = arg min V(XO + ,\.6.x).

>'E[O,l]

Return to step 2.

3.1 Preview

At first blush, FW applied to (14) appears absurd: the decision variable x
has an infinite number of components. Fortunately, however, because only 2/£1
state variables, U e and X e for e E £, appear in the objective function, we can
show that:

• the algorithm operates with a descent direction in terms these 21£1 vari­
ables, and

• the values of these variables result from a finite number of conventional
min-path traffic assignments for each origin node.

The version of FW that solves our tolls problem appears in Figure 10.
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Algorithm T2-ETAjOptimal Tolls

1. Initialization. Set arc times and costs for zero volume:

and for each 0 E N do

algorithm T2-MPA (0, (x~), (u~))

in Figure 11 to obtain initial feasible state variables (x~) and (u~).

2. Direction. Set arc times and costs for current solution:

(to) ~ (t (XO)) (COe) ~ uOet'(xOe)e"--ee' ..--

and initialize state variables

Then for each 0 E N do

algorithm T2-MPA (0, (x~in), (u~in))

to obtain a direction of steepest descent:

(~xe) +- (x: in
) - (x~), (~ue) +- (u:in

) - (u~).

3. Termination. If

then quit, with current state approximating optimal state.

4. Combination. Find ..\ opt such that

..\Opt = arg min L ((u~ + ..\~ue)te(x~ + ..\~xe)).
AE[O,I] eE£

Then update current solution:

(x~) +- (x~ + ..\oPt~xe), (u~) +- (u~ + ..\oPt~ue)

and return to Step 2.

Figure 10: Algorithm T2-ETAjOptimal Tolls
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Algorithm T2-MPA. We call the algorithm that does all these conventional
traffic assignments for one given origin node a "T2 min-path traffic assign­
ment" (T2-MPA). Section (3.3.1) below describes T2-MPA. At this point, it
suffices to say that each of the conventional assignments uses fixed link costs
and times, and simultaneously assigns groups of trips whose VOT falls in a
given finite range. Nevertheless and most important, it assigns every trip in
the group to a path that minimizes that trip's particular GC.

Organization of This Section. Beginning with definitions of algorithm
objects, the remainder of this section derives each step in Figure 10. To avoid
more forward references, we describe the Direction step first, the Combination
step next, then Initialization, and finally Termination.

3.2 Definitions

For future reference, this list includes the algorithm's key objects:

current origin node

current destination node

origin node o's current min-path tree

(unique) path in To from node 0 to node j

GC of path in To from node 0 to node j in tree To
minimum (effective) a E A for origin node 0

min{a E A: L Vod101

fod(a)da > O}
dEN 0

a:ax maximum (effective) a E A for origin node 0

max{a E A: L Vod100

fOd(a)da > O}
dEN 01

maximum VOT for which To is optimal

greatest upper bound less than aub for which To is not optimal

link e's current (fixed) time

link e's current (fixed) cost

link e's current (fixed) GC for a trip with VOT aub

aUbt~ + c~.

The VOT bounds a;;-in and a;;-ax are just the smallest (exclusive) and largest
(inclusive) VOTs for trips out of node o. By a tree To being "optimal" with
respect to a particular a E A, we mean that its paths are min-GC paths for
trips with origin 0 and VOT a. All these definitions become clear below.
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3.3 Step 2: Direction

Finding the descent direction is the algorithm's most complicated step. In the
next few paragraphs, we decompose this step into INI subproblems, each solved
with a finite sequence of conventional min-path assignments. This sequence of
assignments we dub T2-MPA.

Call the current approximate solution Xo and define the associated link times
and costs for e E £ as

t~ te(x~)

c~ u~t:(x~).

To determine the direction of steepest descent, Step 2 seeks the minimand of
the directional derivative at xo. That is, it computes x min such that

where here

(33)

(34)

Theorem 4 (T2 Min-Path Assignment). x min can be found with a se­
quence of conventional min-path traffic assignments.

Proof. Since arc times and costs are fixed at t~ and c~, the right side of (34)
is separable in a and:

minj L)at~+c~)xe(a)da = j ( min I:(at~+c~)xe(a)) da. (35)
XEX A eE£ A x(a)EX(a) eE£

That is, the minimum is the integral of the solutions of a set of independent
linear programs, one for each VOT a. Decomposing the problem yet further,
each of these linear programs is itself INI separable linear programs, one for
each origin node:

Each summand on the rightmost of (36) can be solved with a simple min-GC
path algorithm that gives each arc e a "length" of the link's GC at~ + c~,

then builds a min-path tree and assigns to its paths all trips with VOT a
and origin node o. Each problem is trivial. Each is, in the jargon, an "all-or­
nothing" assignment of the trips Vod(a). The bad news is there are an infinite
number of these problems. The good news is there are only a finite number of
origin nodes and each has only a finite number of min-path trees. Therefore,
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trips with different VaTs must share the same tree. Collectively then, these
different min-path trees partition A into a finite set of intervals.

Lemma 4 (VOT Partitioning). Let alb < aub be two VaTs for which the
same min-path tree To is optimal; i.e., To contains min-GC paths for all trips
originating at 0 with a VaT of either alb or a ub . Then To is a min-path tree
(i.e., is optimal) for any VaT a E (alb,aub ).

Proof. Let Pj E To be the unique path in To to node j and let 7l"j (a) be the
"length" (GC) of this path as perceived by trips with VaT a:

7l"j(a) = L at~ + c~
eEPj

Note that at~ +c~ and therefore 7l"jO are linear in a. It is well known [1] that
To is a min-GC tree for alb and aub iff:

7l"jeCa
lb

) - 7l"i.(a
lb

) <
7l"j. (aub

) - 7l"i. (aub
) <

albtO + CO
e e

aUbt~ + c~.

(37)

(38)

Because alb < a < a ub , we can describe any such a as

a = (1 - "\)a
lb + "\a

ub

for some ,.\ E (0,1). Multiplying both sides of (37) and (38) by (1-"\) and "\,
respectively, then adding the results and rearranging yields

7l"j. ((1- "\)a
lb + ,.\a

Ub
) -7l"i. ((1- "\)a

lb + "\a
ub

) ~ ((1- "\)a
lb + "\a

ub
) t~ +c~

or 7l"j.(a) - 7l"ieCa) ~ at~ + c~, which proves that if To is a min-path tree for alb

and a Ub , it is also one for any a between these VaTs.

Lemma 5 (VOT Greatest Lower Bound). Let To be a tree that is a
min-path tree for trips with VaT aub and let alb be the largest VaT less than
a Ub , for which tree 7j is not a min-path tree is:

alb ~ max{a E [O,aub ) : e (j. To 1\ at~ + c~ < 7l"jeCa) - 7l"ieCa)}.

Proof. For tree To not to be optimal for alb means that for some e (j. To,

(39)

Therefore, from Lemma 5, To is optimal for any VaT from aub down to the
largest alb for which (39) is false. (Note that (39) is false for all in-tree arcs.)
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Traffic Assignment. If a tree To is optimal for all VaTs in the interval
(alb, a Ub ], then the contributions from trips on paths in To to the variables Xoe
and U oe show in the right side of the following two expressions:

X e = L X oe = L L Vod l~bub fod( a )da
oEN oEN eEpd Ci

Ci
ub

U e = L U oe = L L Vod lIb afod(a)da.
oEN oEN eEpd Ci

(40)

(41)

This contribution suggests a min-path assignments of two "trip" variables:
the rightmost summands of (40) and (41). Doing these assignments over the
(finite number of) trees for each origin computes the state variables X e and
ue-without computing individual xoe(a)'s. This proves the theorem.

The theorem's implication is that an otherwise daunting problem with a nom­
inally infinite number of link variables is solved by maintaining only two link
"volume" arrays, (xe) and (ue)-only one more than for conventional traffic
assignment.

3.3.1 Algorithm T2-MPA

Algorithm T2-MPA computes (x oe) and (u oe ) for a given ongm node 0 by
generating a sequence of min-path trees, all rooted at the same node o. It
builds and loads these trees sequentially, from the largest VaT down to the
smallest, in finite steps of VaT.

T2-MPA (Figure 11) finds each individual tree To with a standard min-path
routine, using arc lengths equal to the link GCs with respect to To's maximum
VaT a ub . It figures out To's lower VaT bound alb by scanning the out-of-tree
links for the arc that would enter the tree with the largest VaT smaller than
a ub . Consequently, To contains a min-GC path to each destination node dEN
for its specific half-open VaT interval (alb, a Ub ].

T2-MPA loads these min-paths in To with trips originating at 0 whose VaT
is in that interval. When all trips in the interval are loaded, the VaT's lower
bound becomes the upper bound, and the algorithm iterates on to the next
tree. Because the VaT intervals are exhaustive and mutually exclusive over
the entire effective range of VaT, T-MPA's path loading properly accounts
for all trips from origin node 0, that is, (13) is satisfied. Since neither x:in nor
u:in explicitly appears in the objective function, the algorithm does not save
their values. Instead, it accumulates only x~in and u~in.
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Algorithm T2-MPA (0, (xe ), (ue ))

1. Initialization. Set first tree's upper VOT bound to largest VOT
for which trips originate at node 0:

2. Min-Path Tree. Build min-path tree To for trips with VOT a'Ub
by setting arc "lengths" g~ for e E £ to

go +- a'Ubto + CO
e e e

and executing any conventional algorithm that builds a min-path
tree rooted at node 0, yielding 11)) for all j EN.

3. Lower Bound of VOT. Find largest VOT smaller than a'Ub for
which To is not a min-GC path tree:

alb +- max{a E [amin a'Ub) . edT. /\ atO + CO < 7r. (a) - 7r. (a)}
0' • "F- 0 e e Je Ie'

4. Path Loading. Add trips and moments with VOT in the interval
(alb, a'Ub] to the volume(s) of each link e in their path Pd E To:

Xe +- Xe + L Vod l aub

fod( a )da
eEpd alb

l
aUb

Ue +- Ue + L Vod afod(a)da.
eEpd alb

5. Termination. If alb ::; a:in quit with solution (x e ) and (u e );

otherwise continue to Step 6.

6. Reduce Upper Bound. Reduce To's upper bound on VOT:

and return to Step 2 to build next tree.

Figure 11: Algorithm T2-MPA: Load Trips From Node 0

Executing T2-MPA over all origin nodes completes the traffic assignment and
T2-ETA's Step 2: direction. The values of the link state variables (x e ) and
(u e ) provide the steepest descent direction for use in its Step 4: combination.

24



3.4 Step 4: Combination

With only Xe and Ue appearing in the objective function and having x~in and
u~in from the Direction step, the Combination step becomes easy. Let

~xe(a) = x:in(a) - x~(a).

That is,

~xe Lx:in(a)da - Lx~(a)da = L~xe(a)da

~ue Lax:in(a)da - Lax~(a)da = La~xe(a)da.

Lemma 6 (Convex Combinations). Let X O and xmin E X be two feasible
traffic assignments and let ~x = x min - xO

• Then

1. their convex combination is also feasible, i.e., for A E [0,1],

x Cc = X
O + A~X E X

11. the convex combinations of their state variables X e and U e are the state
variables of their convex combination:

1L: x~~(a)da
A oEN

1L:(1- A)X~e(a) + Ax:in(a)da
AoEN

x~ + A~Xe

1a L: x~~(a)da
A oEN

1a L: (1 - A)X~e(a) + Ax:in(a)da
A oEN

U~ + A~Ue'

Proof. Part (i) is true because the constraint set (13) is convex. Part (ii)
follows because Xe and Ue are linear functions in xoe(a).

The Combination step requires minimizing a convex function of a single vari­
able A:

Aopt arg min V(XO + A~X)
AE[O,l]

arg min L:(u~ + A~Ue)te(X~ + A~Xe)'
AE[O,l] eEf

This is easy prey for several common algorithms, e.g., Golden Section [2].
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3.5 Step 1: Initialization

To launch FW we need starting values for the state variables (x~) and (u~).

The simplest way to obtain initial feasible values for these variables is to set
link costs and times at t~ = te(O) and c~ = 0 and iterate Algorithm T2-MPA
over all origin nodes.

3.6 Step 3: Termination

A common test for terminating FW traffic assignment algorithms is to compare
the "relative gap" with a given positive threshold t << 1:

(42)

To apply (42) conveniently here, we need to express it terms of the state
variables X e and Ue :

Lemma 7 (Compacted Directional Derivative).

VV(XO)~x= L)t~~ue +C~~xe).
eEt:

Proof.

1L (at~ +c~) ~xe(a)da {from Lemma 2}
.A eEt:

L (t~1a~xe(a)da + c~1~xe(a)da)
eEt: .A .A

L(t~~ue +C~~Xe)'
eEt:

A practical termination test is therefore

Having clarified and justified all four steps in Figure 10, we terminate our
derivation of this rendition of a Frank-Wolfe algorithm for finding optimal
tolls on a network. The convexity of (1), assures that the algorithm will
always converge on an optimal solution [2].
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4 Conclusions

This paper obtained the optimal toll for each link in a network by finding the
flow that minimizes the expected total cost of time

e

for a stochastically diverse population of trips. The solution reflects a state
where each trip is user-optimal with respect to its particular value-of-time,
while the resulting total effect is system-optimal. The value of two state vari­
ables derived from the decision variable x~pt yields the optimal toll for link e:

Despite the infinite dimension of the decision variable, the solution algorithm
is efficient. It solves a convex programming problem with a finite number of
conventional min-path traffic assignments and stores only two state variables
per link. It can optimize flow in networks as large as those used for conventional
equilibrium traffic assignment.

The model and the algorithm are robust. For example, some arcs may have
a preset toll-including zero, and the model will honor these fixed tolls while
finding optimal tolls over the remaining links. This feature permits rigorous
integration of existing or invariant link costs, such as prespecified toll roads
and parking fees. In addition, tolls can be rounded, say to whole dimes.
However, in both these latter cases, conditions and claims for convergence and
uniqueness could be problematic [6] and represent worthy subjects for future
research.

4.1 Future Work.

Improvements leading to a dynamic version of the model and its algorithm are,
I think, the most crucial areas for future work. Anyhow, future work should
entail research, development and demonstrations that exploit T2's attributes
while reducing deficiencies.

Dynamic Assignment. The model's most notable weakness is being static.
That is, it ignores the time domain. Congestion is a temporal phenomenon,
and a static model of congestion is an oxymoron. To predict travel times
accurately, a dynamic traffic assignment is essential [8, 9]. Furthermore, any
practical application of congestion pricing would levy different tolls on the
same link at different times of day, and only a dynamic model lets trips delay
their departure and/or arrival time to avoid tolls [4].
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Fortunately, the introduction of the time domain into our model is no more
difficult than into the conventional traffic assignment model. The classic time­
staged network approach applies as easily here. Queue backups, turning delays
at intersections, shock waves, and the like are as readily modeled inside our
bicriterion model. Static bicriterion traffic assignment is a pure generalization
of conventional static traffic assignment: its theory generalizes to a dynamic
model identically. .

Link Time-Volume Functions. It is axiomatic that before we can price
congestion rationally, we must first model it accurately. The better we model
it, the more efficient our tolls. Congestion, besides being temporal and depend­
ing on the additional delay factors alluded to above, is not so well behaved
as "convex and twice differentiable" implies. A more sophisticated road pric­
ing model would incorporate a more realistic albeit ill-behaved depiction of·
congestion, such as that proposed by Bernstein and Smith [5].

Elastic Demand. Another apparent weak point is that the model's trip
matrix is fixed. Again, because it is a generalization of the conventional model,
this shortcoming is easily overcome. A bicriterion traffic assignment model
can be cast as a "combined distribution-traffic assignment model," as Leurent
shows for the case where tolls are fixed [10].

VOT Density Estimation. Having important applicability beyond conges­
tion pricing, the estimating and forecasting of value-of-time probability distri­
butions are superb research topics. Presenting the T2 model in seminars, I am
always asked where these distributions come from. My answer is always the
same [6]: estimate them by observing path choice probability vis a vis path
cost and time and fit curves, using parametric methods or the more modern
approaches proposed by Silverman [15]. I would love to see someone follow up
on this glib response.

4.2 Comment on Performance.

The direction step is clearly the performance bottleneck. It builds an unspec­
ified, potentially large number of trees for each origin zone. Compared to the
conventional traffic assignment, which builds only a single tree per origin, it
would seem to portend a rapacious appetite for compute cycles.

Actually, the direction step does not perform as grotesquely as you might
imagine. It indeed builds multitudinous trees, but fortunately each successive
tree is very similar to its predecessor. One tree can change into the next in
tiny fraction of the time needed to build a tree from scratch-being akin to
swapping basis arcs in the network simplex algorithm.

28



An upcoming paper will describe this implementation and presenting running­
time statistics for several large networks. It will report some impressive tree­
building speeds. On a network of 4000 nodes and 16,000 heavily congested
links, loaded with a 100-percent dense 1000-by-1000 trip matrix and a contin­
uous VOT PDF with domain from zero to $1.00 per minute; my T2-ETA code
running on a 33-MHz 486 builds and loads over 150 trees (600,000 min-GC
paths) per second.
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4.4 Epilogue

In celebration of their success, the Oracle and Chairperson of the Marysville
Board of Supervisors partied one night at the Oracle's home. After her sixth
Rolling Rock, the Oracle began to display remarkable candor for someone in
her profession:

"Look at this crystal ball," she belched. "I bought it at a yard sale. It's
nothing but an upside down fish bowl." Then she lifted the bowl. To the
Chairperson's amazement, it had concealed a notebook PC.

"While I stared into my crystal ball," she grinned, "I was running software
that figured out the traffic Ed's tolls would produce."

"So that's how you did it," said the Chairperson. Then seizing the opportunity,
she continued: "That explains how you predicted traffic for a given toll, but
who gave you those tolls you recommended to me?"

"The computer gave them to me," slurred the Oracle. "Instead of me telling
it tolls, I had it figure out the best ones."

"The best tolls?" the Chairperson asked.
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"Yes," continued the Oracle. "The best tolls would cause trips to minimize
the total perceived travel-time cost, while each trip minimized its own gener­
alized cost: self interest working in society's interest!" Then unfolding an old
drawing of hers (Figure 12) , she mumbled: "These figures here represent an
approximate equilibrium, but the relative gap is less that 10-3 . If you divide
the Ue by the Xe, you get the average value of time of trips using link e, and

"

82 473 22 362 16 166 $1.83 11.64 $0.23 9.91 $0.02 9.04

$1.84 11.74

-$0.51($0)

$0.22 9.90

-$0.51($0)

7 }--_9_.0_4----1-{

$0.02 9.0480 47722 361

}--......;;.;520.-3----1-{ 9
18 40

Figure 12(a): Volumes (x e ) and Moments (u e )

Figure 12: Optimal Tolls: State Variables at Equilibrium (t = 10-3 )

Seeking a return to familiar ground, the Chairperson interrupted: "So the tolls
the computer came up with are the ones you recommended for Marysville."

"Yes and no," answered the Oracle. Running her hand across the drawing, she
explained: "Here are the tolls my PC came up with (Figure 12(b)). The tolls
I gave you are my tidier versions of these. I got rid of the tiny ones, rounded
others to a nickel, and created some symmetry."

"But how did you know your tidy tolls would not get messy results?" asked
the Chairperson.

"I checked them out with the computer," answered the Oracle. "I ran it again
using my tolls. The results I got were great."

"They sure were," agreed the Chairperson. Smiling widely, the two ladies
clinked their glasses.
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